Earthquake-Resistant Structures


Earthquake-resistant or aseismic structures are designed to protect buildings to some or greater extent from earthquakes. While no structure can be entirely immune to damage from earthquakes, the goal of earthquake-resistant construction is to erect structures that fare better during seismic activity than their conventional counterparts. According to building codes, earthquake-resistant structures are intended to withstand the largest earthquake of a certain probability that is likely to occur at their location. This means the loss of life should be minimized by preventing collapse of the buildings for rare earthquakes while the loss of the functionality should be limited for more frequent ones.

Currently, there are several design philosophies in earthquake engineering, making use of experimental results, computer simulations and observations from past earthquakes to offer the required performance for the seismic threat at the site of interest. These range from appropriately sizing the structure to be strong and ductile enough to survive the shaking with an acceptable damage, to equipping it with base isolation or using structural vibration control technologies to minimize any forces and deformations. While the former is the method typically applied in most earthquake-resistant structures, important facilities, landmarks and cultural heritage buildings use the more advanced (and expensive) techniques of isolation or control to survive strong shaking with minimal damage. Examples of such applications are the Cathedral of Our Lady of the Angels and the Acropolis Museum.

Trends and Projects

Building materials

Based on studies in New Zealand, relating to Christchurch earthquakes, precast concrete designed and installed in accordance with modern codes performed well. According to the Earthquake Engineering Research Institute, precast panel buildings had good durability during the earthquake in Armenia, compared to precast frame-panels.

Earthquake shelter

One Japanese construction company has developed a six-foot cubical shelter, presented as an alternative to earthquake-proofing an entire building.

Concurrent shake-table testing

Concurrent shake-table testing of two or more building models is a vivid, persuasive and effective way to validate earthquake engineering solutions experimentally.

Thus, two wooden houses built before adoption of the 1981 Japanese Building Code were moved to E-Defense for testing (see both pictures aside). The left house was reinforced to enhance its seismic resistance, while the other one was not. These two models were set on E-Defense platform and tested simultaneously.

Impact Factor: 0.64*

ISSN: 2472-0437

Current Issue: Volume 5: Issue 1

Journal of steel structures and construction welcomes submissions with cutting-edge research in the field of Steel. Unsolicited manuscripts including research articles, commentaries, and other reports will also be considered for publication and should be submitted either online or through mail.

You may submit your paper as an attachment at  or

Online Submission:

Submit your Manuscript online or by mailing to us at

Author Information: Complete names and affiliation of all authors, including contact details of corresponding author (Telephone, Fax and E-mail address).

Best Regards,
Editorial Manager,
Journal of Steel Structures and Construction
Contact: +44-20-3608-4181